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a b s t r a c t

Conventional dose finding methods require the dichotomization of toxicity outcome
measures generally collected in an ordinal scale. To improve efficiency and include more
information on the gradation of toxicities, a sequential likelihood procedure that accounts
for multiple toxicity constraints is proposed to differentiate the tolerance for toxicity of
various degrees of severity under a novel class ofmultiplicativemodels, and the asymptotic
properties of the procedure under certain model misspecification are established.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The main objective of dose finding clinical trials is to estimate the maximum tolerated dose, defined as the dose level
associatedwith a pre-specified probability of dose limiting toxicity. Therefore, the objective is posed as a quantile estimation
problem based on a binary outcome. Numerous methods have been proposed under this framework. Among the earliest
publications in this area, we have Storer (1989), O’Quigley et al. (1990), Durham et al. (1997), and Babb et al. (1998). To
implement any of these methods, the toxicity outcome measured must be dichotomized given that it is collected on an
ordinal scale from 0 to 5 based on the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-
CTCAE) (National Cancer Institute, 2003). To improve efficiency, several methods have been proposed to allow for ordinal
toxicity outcomes. Several of these improved methods incorporate gradations of toxicity, while controlling only the rate of
dose limiting toxicity in the objective Simon et al. (1997), Wang et al. (2000), Iasonos et al. (2011), Van Meter et al. (2011,
2012). Others reformulate the problem to find the dose associated with a pre-specified value of the outcome Bekele and
Thall (2004), Yuan et al. (2007), and Ivanova and Kim (2009). The method of Lee et al. (2011) retains the quantile estimation
objective while controlling the rate of higher toxicities as well to ensure that the identified dose is safe in terms of both
dose limiting toxicity and other higher toxicities. This method generalizes the definition of the maximum tolerated dose by
imposingmultiple constraints on toxicities and proposes a generalized version of the continual reassessmentmethod under
the Bayesian framework.

Among the above dose finding methods, the continual reassessment method originally proposed by O’Quigley et al.
(1990) is one of the few methods whose theoretical properties have been rigorously investigated. This paper aims to estab-
lish the theoretical properties of themulti-parametermodels under themultiple toxicity constraint framework. Specifically,
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we investigate the large sample properties of the likelihood procedure for the continual reassessment method with mul-
tiple constraints and investigate its asymptotic behaviors. The paper is organized as follows. In Section 2, we describe the
probability model, the objective under multiple constraints, and the dose-finding algorithm. In Section 3, we establish the
large sample properties of the likelihood procedure under a class of multiplicative models. In Section 4, we conduct a simu-
lation study comparing the proposed method with the Bayesian approach and the likelihood based continual reassessment
method that considers only the constraint for dose limiting toxicity. Some discussions are provided in Section 5.

2. Methods

Let D = {d1, . . . , dK } be the K test doses of ascending dosage d1 < · · · < dK . Let Y ∗ be an ordinal or continuous toxicity
outcome such as theNCI-CTCAE or the toxicity burden score Lee et al. (2012). Let Y be the re-defined ordinal toxicity outcome
which takes on values 0, 1, . . . , L based on the desired constraints, such that L is less than or equal to the number of possible
toxicity outcomes in Y ∗. For example, suppose the raw outcome Y ∗ is the NCI-CTCAE, which assumes values 0, 1, 2, 3, 4, 5,
and we are interested in only two constraints (i.e. L = 2), one on pr(Y ∗

≥ 3) and the other on pr(Y ∗
≥ 4). In that case, the

variable Y is defined as Y = 0 if and only if Y ∗
= 0, 1, 2, Y = 1 if and only if Y ∗

= 3, and Y = 2 if and only if Y ∗
≥ 4. Denote

pr(Y ≥ l|dk) = Rl(dk), k = 1, . . . , K , l = 1, . . . , L. The unknown toxicity probabilities Rl(dk) satisfy 0 < Rl(d1) < · · · <
Rl(dK ) < 1 for l = 1, . . . , L, and Rl1(dk) > Rl2(dk) for any l1 < l2 and fixed k. Thus, it is implicitly assumed that there are L
toxicity constraints, where constraint on pr(Y ≥ l) corresponds to the non-zero value Y = l, l = 1, . . . , L.

Consider a pre-specified targeting toxicity vector θ = (θ1, . . . , θL)
T such that 1 > θ1 > · · · > θL > 0. For each l =

1, . . . , L, we define the optimal dose associated with the lth toxicity constraint as

dνl = argmin
x∈D

|Rl(x)− θl|.

When l = 1, Y ≥ 1 corresponds to the dose limiting toxicity and dν1 corresponds to the original definition for themaximum
tolerated dose.

The maximum tolerated dose under multiple toxicity constraints is defined as

dν = min{dν1 , . . . , dνL},

which is seen as a generalization of definition for the maximum tolerated dose. In this paper, we assume that dν is uniquely
defined.

We note that the objective of the CRMwithmultiple constraints is the same as the original CRMwhen a single constraint
is specified, that is, it identifies the dose associated with a single target probability of dose limiting toxicity. However, when
more than one constraint is specified, the objective differs from that of the original CRM. Previously proposed methods
by Iasonos et al. (2011), Van Meter et al. (2011, 2012) have incorporated information on grades of toxicity by including the
additional information in themodeling, but keeping the objective the same as the original CRM. Their extensive simulations
conclude that only including the grade information in themodeling does not generally improve the accuracy of identification
of the MTD. By contrast, our proposed method changes the objective by including toxicity thresholds for the various grades
of toxicity.

To estimate the maximum tolerated dose dν , consider a generic working model

pr(Y ≥ l) = ψl(x, β), l = 1, . . . , L, (1)

where β = (β1, . . . , βL)
T is the unknown parameter. We assume that the above model is rich enough in the sense that for

any fixed dose x and any given targeting toxicity θ , there exists a β such thatψl(x, β) = θl, l = 1, . . . , L. The choice of such
models will be discussed in Section 3.1.

We propose to use the maximum likelihood method to estimate the model parameters instead of the Markov chain
Monte Carlo method used in Lee et al. (2011). Specifically, the maximum likelihood estimate β̂n based on the toxicity
outcomes of the first n subjects is a value maximizing the likelihood

L(β) =

n
i=1

ψL{x(i), β}
I(Yi=L) [1 − ψ1{x(i), β}]I(Yi=0)

L−1
l=1

[ψl{x(i), β} − ψl+1{x(i), β}]I(Yi=l) .

If β̂n exists, the recommended dose for the (n + 1)th patient is

x(n + 1) = min{argmin
x∈D

|ψl(x, β̂n)− θl|, l = 1, . . . , L}.

The likelihood approach does not require the specification of priors. In addition, the determination of themaximum like-
lihood estimator β̂n is much easier to compute as it does not require the Markov chain Monte Carlo method. However, β̂n
may not exist, particularly when n is small. In fact, Pratt (1981) indicated that under certain condition onψl(x, β), the max-
imum likelihood estimate β̂n exists when all the (L+1) possible values of Y are observed. Therefore, to make use of all the L
constraints, all the L+ 1 possible values of Y must be observed, which we call ‘‘full heterogeneity’’. However, we emphasize
that our procedure can be used as long as two or more distinct values are observed, which we call ‘‘partial heterogeneity’’,
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with the understanding that under partial heterogeneity, some of the constraints may not be invoked. For implementation
of the method, we take a staged approach which depends on the extent of heterogeneity observed. At the start of a trial,
we propose to use a rule based design that starts at the lowest dose and escalates after every patient (1 + 1) or escalates in
cohorts of 3 (3+3). Once partial heterogeneity is achieved, the design switches to the proposed procedure invoking asmany
constraints as distinct values of outcomes are observed. For example, suppose Y takes on three possible values: 0 (no toxic-
ity), 1 (dose limiting toxicity), and 2 (life-threatening toxicity), andwe are interested in two constraints: pr(Y ≥ 1) ≤ θ1 and
pr(Y ≥ 2) ≤ θ2. In the first stage, we will use a rule-based design. If the first toxicity we observe is Y = 2, then we proceed
by considering only the constraint pr(Y ≥ 2) ≤ θ2. We invoke the constraint pr(Y ≥ 1) ≤ θ1 once Y = 1 is observed. This
is different from the regular CRM in that the constraint pr(Y ≥ 1) ≤ θ1 is always used disregarding whether Y = 1 or Y = 2
is first observed. In the situation where Y = 1 is not observed and all toxicities are Y = 2, the CRM will recommend the
dose with a toxicity probability of θ1 while the proposed method will recommend the dose with a toxicity probability of θ2.

3. Asymptotic properties

3.1. Continual reassessment method with single constraint

The asymptotic properties of the likelihood approach to continual reassessment method for single constraint (i.e., L = 1)
have been established in Shen and O’Quigley (1996). In this section, we briefly review their results in order to make
comparison with our main results for multiple constraints.

With L = 1 we observe a binary toxicity outcome Y with Y = 1 indicating dose limiting toxicity and Y = 0 otherwise.
Using the notation of the previous section, the maximum tolerated dose is defined as

dν = argmin
x∈D

|R1(x)− θ1|,

where θ1 is a pre-specified target toxicity rate and R1(dk), k = 1, . . . , K , are totally unknown except that they are nonde-
creasing with respect to dosage dk. They proposed to estimate the maximum tolerated dose when pr(Y = 1) = ψ(x, β).
Specifically, let β̂n be the maximum likelihood estimator based on data from the first n subjects, then the proposed dosage
for the (n + 1)th subject would be

x(n + 1) = argmin
x∈D

|ψ(x, β̂n)− θ1|,

which would also be the estimate of the maximum tolerated dose dν at the (n + 1)th step.
Shen and O’Quigley (1996) showed that x(n) is asymptotically consistent, that is x(n) → dν almost surely, provided that

pr(Y = 1) = ψ(x, β) satisfies the following conditions
Condition C1: For each β , ψ(x, β) is strictly increasing in x.
Condition C2: Function ψ(x, β) is continuous and strictly monotone in β in the same direction for all x.
Condition C3: For each 0 < t < 1 and each x,

t
ψ ′

ψ
(x, β)+ (1 − t)

−ψ ′

1 − ψ
(x, β)

is continuous and strictly monotone in β .
More important, they pointed out that their consistency result may still hold even if the model specified is not the true

model. Specifically, define βk such that ψ(dk, βk) = R1(dk), k = 1, . . . , K and

S = {β : |ψ(dν, β)− θ1| ≤ |ψ(dk, β)− θ1|, k ≠ ν} .

They proved that x(n) is consistent provided that in addition to Conditions C1–C3, the following condition also holds:
Condition C4: For k = 1, . . . , K , βk ∈ S.
It is easily seen that this condition is trivially satisfied when ψ(x, β) is indeed the true model. Therefore, Condition C4

can be viewed as a robustness condition for a working model ψ(x, β).

3.2. Continual reassessment method with multiple constraints

In this section, we investigate the asymptotic properties of the proposed likelihood approach when multiple constraints
are imposed for an ordinal toxicity outcome. Before embarking on the proof of consistency, we first point out that the
maximum likelihood estimator β̂n exists when n is large enough by establishing the following lemma.

Lemma 1. Define

n0 = inf


n :

n
i=1

I(Yi = l) > 0, l = 0, 1, . . . , L


,

the first time that all L possible values of Y are observed. Then, pr(n0 < ∞) = 1.
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Proof. Consider the multivariate martingale

Wn =


n

i=1

I(Yi ≥ 1)− R1{x(i)}, . . . ,
n

i=1

I(Yi ≥ L)− RL{x(i)}

T

.

The martingale limit theorem implies thatWn/n → 0 almost surely. Since

0 < Rl(d1) ≤
1
n

n
i=1

Rl{x(i)} ≤ Rl(dK ) < 1, l = 1, . . . , L,

we conclude that when n is large enough, 1 ≤
n

i=1 I(Yi ≥ l) ≤ n − 1 almost surely for l = 1, . . . , L, which implies that
pr(n0 < ∞) = 1. This result indicates that the maximum likelihood estimate β̂n exists almost surely when n is large
enough. �

It is important to note that not all generic models (1) can yield a consistent dose sequence in a multiple constraints case.
Therefore, to obtain a consistent dose sequence x(n) and the maximum likelihood estimate β̂n, we first need to choose a
working model wisely.

LetM be the collection of parametricmodels satisfying Conditions C1–C3.We propose to use the followingmultiplicative
model as the working model for Y when multiple constraints are used

pr(Y ≥ l) = ψl(x, β) =

l
i=1

ϕi(x, βi), l = 1, . . . , L, (2)

where ϕ1, . . . , ϕL ∈ M.
Some remarks on the proposedmultiplicativemodel (2) are in order. First, model (2) is equivalent to the followingmodel

pr(Y ≥ l + 1|Y ≥ l) = ϕl+1(x, βl+1), l = 1, . . . , L − 1.
Second, model (2) is flexible because the ϕls could be in different analytic forms. In practice, however, it is convenient to
choose ϕ1 = · · · = ϕL = ϕ. In our simulation, we chose the empiric model ϕ(x, β) = xβ . Third, although in general we do
not have Rl(dν) = θl, l = 1, . . . , L, model (2) is rich enough such that for any fixed x and any target toxicity θ , we can find
β such that ψl(x, β) = θl, l = 1, . . . , L.

To formulate the condition for consistency of the dose sequence using the proposed procedure, we define the ‘‘good
parameter’’ set as

Ω =


β : dν = min


argmin

x∈D
|ψl(x, β)− θl|, l = 1, . . . , L


.

The set Ω is obviously non-empty since it contains β0, where ψl(dν, β0) = θl, l = 1, . . . , L. However, unlike the single
constraint case considered in Shen and O’Quigley (1996), Ω is usually not a convex set. As an example, consider a toxicity
outcome Y whose possible values are 0, 1, 2 and the following working model

pr(Y ≥ 1) = xβ1 , pr(Y = 2) = xβ1+β2 .
Proposition 1 shows thatΩ is not a convex set.

Proposition 1. Assume L = 2,ψ1(x, β) = xβ1 , ψ2(x, β) = xβ1+β2 ,β = (β1, β2)
T . Denote bk as the unique solution to d

bk
k +dbkk+1

= 2θ1 and ck as the unique solution to dckk + dckk+1 = 2θ2, for k = 1, . . . , K − 1 and set b0 = c0 = 0, bK = cK = ∞. Define

Ω+ = {β : bν−1 ≤ β1 ≤ bν, β2 + β1 ≥ cν−1, β2 ≥ 0}

and

Ω− = {β : β1 ≥ bν−1, cν−1 ≤ β2 + β1 ≤ cν, β2 ≥ 0} .

Then,Ω = Ω+ ∪Ω−.
Proof. For any i, j such that 1 ≤ i, j ≤ K . Define

Ωij =

β : |ψ1(di, β)− θ1| ≤ |ψ1(dk, β)− θ1|, k ≠ i, |ψ2(dj, β)− θ1| ≤ |ψ2(dk′ , β)− θ2|, k′

≠ j

.

The setΩij consists of parameters that yield ν1 = i and ν2 = j, that is, di is the optimal dose for the first constraint and dj is
the optimal dose for the second constraint. By Cheung and Chappell (2002),

Ωij =

β : bi−1 ≤ β1 ≤ bi, hj−1(β1) ≤ β2 ≤ hj(β2), β2 ≥ 0


,

where bi’s are defined in Proposition 1 and for any fixed β1 ∈ [bi−1, bi], hj(β1) is the solution to

d
β1+hj(β1)
j + d

β1+hj(β1)
j+1 = 2θ2.

Taking the derivative of the above implicit function, we conclude that ∂hj(β1)
∂β1

= −1 hence hj(β1) = −β1 + cj for some
constant cj. Plugging the expression ofhj(β1)back into the above equation,we conclude that cj is determined in Proposition 1.
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It is straightforward to check that

Ω+ =
K
∪
j=ν
Ων,j = {β : bν−1 ≤ β1 ≤ bν, β2 + β1 ≥ cν−1, β2 ≥ 0} ,

Ω− =
K
∪
i=ν
Ωi,ν = {β : β1 ≥ bν−1, cν−1 ≤ β2 + β1 ≤ cν, β2 ≥ 0} ,

and both sets are convex andΩ = Ω+ ∪Ω−. �

Let β(k) = {β1(k), . . . , βL(k)}T be such that ψl(dk, β(k)) = Rl(dk), l = 1, . . . , L, k = 1, . . . , K . Denote set B =

{β(1), . . . , β(K)} and its convex hull B∗. Let

β−

l = min{βl(1), . . . , βl(K)}, β+

l = max{βl(1), . . . , βl(K)}, l = 1, . . . , L.

The rectangular envelope of a set B is defined as

B#
=

L
l=1

[β−

l , β
+

l ],

the Cartesian product of the L close intervals [β−

l , β
+

l ], l = 1, . . . , L. It is clear that B ⊂ B∗
⊂ B#. For example, suppose

L = 2, K = 3, β(1) = (1, 2), β(2) = (3, 1), β(3) = (2, 4). Then, B = {(1, 2), (3, 1), (2, 4)} which consists of 3 points in
the two-dimensional Euclidean space, and its convex hull B∗ consists of all the points in the triangle formed by the 3 points
in B, while the rectangular envelope B#

= [1, 3] × [1, 4] = {(x, y) : 1 ≤ x ≤ 3, 1 ≤ y ≤ 4}.

Theorem 1. Assume a working multiplicative model (2). Suppose that the rectangular envelope B# is a subset of Ωo, the interior
of Ω . Then, β̂n → β0 and x(n) → dν almost surely.

Proof. Define the average score

Sn(β) =
1
n

n
i=1


L−1
l=1

I(Yi = l)
∇ψl − ∇ψl+1

ψl − ψl+1
{x(i), β} + I(Yi = L)

∇ψL

ψL
{x(i), β} + I(Yi = 0)

−∇ψ1

1 − ψ1
{x(i), β}


and its expectation

S̃n(β) = E{Sn(β)}

=
1
n

n
i=1


L−1
l=1

[Rl{x(i)} − Rl+1{x(i)}]
∇ψl − ∇ψl+1

ψl − ψl+1
{x(i), β}

+ RL(x(i))
∇ψL

ψL
{x(i), β} + [1 − R1(x(i))]

−∇ψ1

1 − ψ1
{x(i), β}


.

By an argument similar to Shen and O’Quigley (1996), the martingale family Sn(β)− S̃n(β) converges to 0 almost surely and
uniformly with respect to β ∈ A for any compact set A. That is,

sup
β∈A

|Sn(β)− S̃n(β)| → 0 (3)

almost surely. Rewrite

S̃n(β) =

K
k=1

p̂k


L−1
l=1

{Rl(dk)− Rl+1(dk)}
∇ψl − ∇ψl+1

ψl − ψl+1
(dk, β)+ RL(dk)

∇ψL

ψL
(dk, β)+ {1 − R1(dk)}

−∇ψ1

1 − ψ1
(dk, β)


,

where p̂k is the proportion of subjects assigned to dose dk out of the first n subjects. For model (2), S̃n(β) = 0 is simplified
as the following system of equations

K
k=1

p̂k


R1(dk)

ϕ′

1

ϕ1
(dk, β1)+ {1 − R1(dk)}

−ϕ′

1

1 − ϕ1
(dk, β1)


= 0;

K
k=1

p̂kR1(dk)

R2(dk)
R1(dk)

ϕ′

2

ϕ2
(dk, β2)+


1 −

R2(dk)
R1(dk)


−ϕ′

2

1 − ϕ2
(dk, β2)


= 0;

...
K

k=1

p̂kRL−1(dk)


RL(dk)
RL−1(dk)

ϕ′

L

ϕL
(dk, βL)+


1 −

RL(dk)
RL−1(dk)


−ϕ′

L

1 − ϕL
(dk, βL)


= 0.
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Denote the solution to S̃n(β) = 0 as β̃n. Since by Condition C3, the left hand sides of the above L equations are monotone
in β1, . . . , βL, respectively, we conclude that β̃n ∈ B#

⊂ Ωo. Choosing A = B# in (3) and by the openness of Ωo, β̂n ∈ Ω

eventually. By the definition ofΩ , x(n + 1) = dν eventually. Now, as n → ∞, p̂k → 0 for k ≠ ν. Therefore, β̃n, and hence
β̂n, approaches β0, the unique solution to the following system of equations

L−1
l=1

{Rl(dν)− Rl+1(dν)}
∇ψl − ∇ψl+1

ψl − ψl+1
(dν, β)+ RL(dν)

∇ψL

ψL
(dν, β)+ {1 − R1(dν)}

−∇ψ1

1 − ψ1
(dν, β) = 0.

This proves the consistency of β̂n. �

Once the consistency of β̂n is obtained, we can establish its asymptotical distribution.

Theorem 2. Under the same assumptions of Theorem 1, we have, as n → ∞,
√
n(β̂n − β0)→d NL {0,Σ(dν, β0)} ,

where Σ(dν, β0) is an L × L positive definite diagonal matrix whose lth diagonal entry is θl(θl−1 − θl)/[θ
3
l−1{ϕ

′

l (dν, β0,l)}
2
],

l = 1, . . . , L, and θ0 ≡ 1.

The proof of Theorem 2 is straightforward and hence is omitted.

3.3. Comparison of assumptions for single versus multiple constraints

The robust condition we proposed for the asymptotic result under multiple constraints is B#
⊂ Ωo. In this section, we

provide some discussions of this assumption and contrast it with the one made in Shen and O’Quigley (1996) for single
constraint (i.e., Condition 4 in Section 3.1).

When the working model (2) is indeed the true model, B#
= {β0} ⊂ Ωo, hence this assumption is trivially satisfied. If

the model is misspecified, the procedure could still be consistent as long as B#
⊂ Ωo, and in that case the robustness of the

procedure is reflected by the geometric shape and volume of the rectangular envelope B#. That is, the bigger the volume of
B#, the more robust the result against violation of model assumption.

Using our notations, the Condition C4 is B ⊂ Ωo, which implies that the convex hull B∗
⊂ Ωo since the good parameter

set Ω in the single constraint case is a convex set. They showed that B∗
⊂ Ωo implies that β̃n ∈ Ωo (so does β̂n when

n is large enough). This claim is based on the mathematical fact that the maximum point of a positive linear combination
of univariate non-monotone concave down functions lies in the convex hull spanned by the individual maximum points
of these concave down functions. Unfortunately, there is no similar fact for multivariate convex functions. Therefore, the
assumption B∗

⊂ Ωo is not enough for the multiple constraints problem. Our proposed assumption B#
⊂ Ωo is stronger

than B∗
⊂ Ωo since the convex hull B∗ is always a subset of the rectangular envelope B#.

Although we have shown that assumption B#
⊂ Ωo implies β̃n ∈ Ωo, we must emphasize that the claim is confirmed

only for the proposed multiplicative model (2) and may not be true for a non-multiplicative model. This signifies a drastic
technical difference between a single constraint dose finding problem and a multiple constraint dose finding problem.
From a practical point of view, we argue that our multiplicative model, which allows for different analytical forms for
ϕl(x, βl), l = 1, . . . , L, should be flexible enough to serve the purpose of most toxicity outcome modeling.

4. Simulation study

In the simulation study, we compare the performance of two versions of the proposed likelihood procedure for multiple
toxicity constraints using different rule based designs in the first stage with its Bayesian counterpart (CRM-MC-B), one with
dose escalation in cohorts of three (CRM-MC-L-3 + 3) and the other with dose escalation after every patient (CRM-MC-L-
1+1). For reference purpose, we also include the two versions of the likelihood procedure for single constraint (CRM-L-3+3
and CRM-L-1 + 1).

Using the general setting of the bortezomib trial (Leonard et al., 2005) in Lee et al. (2011), we assume five dose levels
(i.e., K = 5) with the third dose level being the prior guess of the maximum tolerated dose. The ordinal toxicity outcome
has three possible values Y = 0, 1, 2, where Y = 1, 2 denotes dose limiting toxicity and Y = 2 a severe or life threat-
ening toxicity. Two toxicity constraints are imposed, i.e., L = 2. The primary constraint requires that the probability of
dose limiting toxicity pr(Y ≥ 1|x) ≤ θ1 = 0.25 and the secondary constraint requires the probability of severe toxicity
pr(Y = 2|x) ≤ θ2 = 0.10. We consider sample sizes of 21 and 39 with the corresponding scaled doses (0.02, 0.09, 0.25,
0.44, 0.62) and (0.06, 0.14, 0.25, 0.38, 0.50). These scaled doses are obtained using Lee and Cheung (2009) and assuming
only the primary constraint. The empiric working models as specified in Proposition 1 are used. Dose skipping and dose
escalation are not allowed immediately after Y ≥ 1 is observed.

Two thousand simulations are performed for each of the five scenarios considered (Tables 1 and 2). For each method
the percentage of times a dose is recommended as the maximum tolerated dose is reported. In Scenario 1, the optimal
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Table 1
Operating characteristics of CRM-L, CRM-MC-L, and CRM-MC-B methods with N = 21.

Dose level
1 2 3 4 5

Scenario 1
Probability of DLT 0.05 0.05 0.25 0.45 0.55
Probability of severe toxicity 0.01 0.01 0.10 0.24 0.35
% recommended by CRM-L-3+3 1 13 63 21 2
% recommended by CRM-L-1+1 0 12 67 20 1
% recommended by CRM-MC-L-3+3 5 29 57 9 0
% recommended by CRM-MC-L-1+1 3 23 62 11 1
% recommended by CRM-MC-B 1 23 70 6 0

Scenario 2
Probability of DLT 0.05 0.05 0.25 0.45 0.55
Probability of severe toxicity 0.00 0.01 0.05 0.10 0.20
% recommended by CRM-L 3+3 1 13 63 21 2
% recommended by CRM-L 1+1 0 12 67 20 1
% recommended by CRM-MC-L-3+3 2 20 61 15 1
% recommended by CRM-MC-L-1+1 1 17 64 17 1
% recommended by CRM-MC-B 1 17 71 11 0

Scenario 3
Probability of DLT 0.05 0.25 0.45 0.55 0.70
Probability of severe toxicity 0.00 0.01 0.05 0.10 0.20
% recommended by CRM-L-3+3 7 70 21 1 0
% recommended by CRM-L-1+1 9 69 20 2 0
% recommended by CRM-MC-L-3+3 10 70 19 1 0
% recommended by CRM-MC-L-1+1 12 68 19 2 0
% recommended by CRM-MC-B 16 67 15 1 0

Scenario 4
Probability of DLT 0.05 0.10 0.16 0.25 0.45
Probability of severe toxicity 0.01 0.03 0.10 0.23 0.35
% recommended by CRM-L-3+3 1 14 37 35 14
% recommended by CRM-L-1+1 1 10 30 45 15
% recommended by CRM-MC-L-3+3 6 33 44 14 3
% recommended by CRM-MC-L-1+1 5 28 44 20 3
% recommended by CRM-MC-B 2 22 54 21 1

Scenario 5
Probability of DLT 0.05 0.12 0.20 0.25 0.45
Probability of severe toxicity 0.01 0.10 0.18 0.23 0.35
% recommended by CRM-L-3+3 1 20 39 29 11
% recommended by CRM-L-1+1 1 15 32 38 14
% recommended by CRM-MC-L-3+3 23 47 20 8 2
% recommended by CRM-MC-L-1+1 17 42 27 11 2
% recommended by CRM-MC-B 9 39 37 15 1

dose for the primary constraint agrees with the one for the secondary constraint. In Scenarios 2 and 3, the optimal dose
for the secondary constraint is either one level (Scenario 2) or two levels (Scenario 3) higher than the one for the primary
constraint. These three scenarios are chosen to simulate scenarios when multiple constraints are not needed because the
primary constraint is the limiting constraint. The purpose is to evaluate the efficiency of the proposedmethod in comparison
with the original CRM. In Scenarios 4 and 5, the optimal dose for secondary constraint is either one level (Scenario 4) or two
levels (Scenario 5) lower than the one for the primary constraint. As the result, in both these cases the maximum tolerated
dose for multiple constraints is lower than the optimal dose for the single primary constraint. The 4th and 5th scenarios
are chosen to simulate scenarios when multiple constraints are useful because the secondary constraint is the limiting
constraint. Here we point out that in these scenarios, the objective of CRMwithmultiple constraints is different from that of
the original CRM which is only based on the primary constraint. Therefore, it is expected that the two methods will choose
different MTDs.

When the maximum tolerated dose under multiple constraints agrees with the optimal dose for the primary constraint
(Scenarios 1, 2, and 3), the likelihood based continual reassessment method with multiple constraints performs similarly
(Scenarios 2 and 3) or slightly worse (Scenario 1). In these cases, imposing the secondary constraint does not improve the
ability to identify themaximum tolerated dose andmayworsen the performance for small sample sizes. With larger sample
sizes, the performance of the likelihood based continual reassessment method with multiple constraints improved and was
comparable to the likelihoodmethods with a single constraint (Table 2). When themaximum tolerated dose under multiple
constraints does not agree with the optimal dose for the primary constraint (Scenarios 4 and 5), both the Bayesian and
likelihood methods that take into account of the multiple constraints performed much better than the original likelihood
based continual reassessment methods which recommended a wrong dose with high probability. The likelihood based
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Table 2
Operating characteristics of CRM-L and CRM-MC-L methods with N = 39.

Dose level
1 2 3 4 5

Scenario 1
Probability of DLT 0.05 0.05 0.25 0.45 0.55
Probability of severe toxicity 0.01 0.01 0.10 0.24 0.35
% recommended by CRM-L-3+3 0 9 76 15 0
% recommended by CRM-L-1+1 0 8 79 13 0
% recommended by CRM-MC-L-3+3 1 19 73 7 0
% recommended by CRM-MC-L-1+1 0 18 75 7 0

Scenario 2
Probability of DLT 0.05 0.05 0.25 0.45 0.55
Probability of severe toxicity 0.00 0.01 0.05 0.10 0.20
% recommended by CRM-L-3+3 0 9 76 15 0
% recommended by CRM-L-1+1 0 8 79 13 0
% recommended by CRM-MC-L-3+3 0 8 77 14 0
% recommended by CRM-MC-L-1+1 0 9 78 13 0

Scenario 3
Probability of DLT 0.05 0.25 0.45 0.55 0.70
Probability of severe toxicity 0.00 0.01 0.05 0.10 0.20
% recommended by CRM-L-3+3 8 78 14 0 0
% recommended by CRM-L-1+1 8 80 12 0 0
% recommended by CRM-MC-L-3+3 7 79 14 0 0
% recommended by CRM-MC-L-1+1 8 79 13 0 0

Scenario 4
Probability of DLT 0.05 0.10 0.16 0.25 0.45
Probability of severe toxicity 0.01 0.03 0.10 0.23 0.35
% recommended by CRM-L-3+3 0 3 28 58 11
% recommended by CRM-L-1+1 0 3 29 59 10
% recommended by CRM-MC-L-3+3 1 25 60 13 1
% recommended by CRM-MC-L-1+1 1 25 61 12 0

Scenario 5
Probability of DLT 0.05 0.12 0.20 0.25 0.45
Probability of severe toxicity 0.01 0.10 0.18 0.23 0.35
% recommended by CRM-L-3+3 0 8 35 48 9
% recommended by CRM-L-1+1 0 7 35 50 9
% recommended by CRM-MC-L-3+3 13 59 22 5 0
% recommended by CRM-MC-L-1+1 12 59 24 5 0

methods for multiple constraints had comparable performance across all the five scenarios with their Bayesian counterpart,
but dramatically reduced the computing time (from 24 h to 15 min). This confirmed our initial conjecture about the two
methods and supported our preference to the likelihoodmethods for their computational convenience. This conclusion was
further supported by additional simulations with 60 subjects for each simulation (data not shown). The performance of the
likelihood based methods improved as the sample size increased but the computational burden made it impractical to use
the Bayesian method.

In comparison to the CRM, the simulations indicate that in the scenarios where the objective matches that of the CRM,
the CRM performs slightly better than the proposed method, suggesting a small loss of efficiency due to the additional
constraint. In scenarios where the objectives are different, the methods select the dose associated with their corresponding
objectives. That is, the CRM selects the MTD associated with the primary constraint and the CRM with multiple constraints
selects the MTD that satisfies both constraints. Therefore, if at the planning stage, with or without knowledge of the relative
composition of toxicity grades, the investigators are interested in controlling the probabilities of toxicity for the various
gradations of toxicities, they could use the proposed method to ensure that the MTD selected satisfies the prespecified
multiple constraints. For example, if the investigators suspect that a substantial number of the DLTs would be grade 4 or
higher toxicities and are not willing to tolerate a 25% rate of these severe toxicities, they can specify a lower tolerance for
these severe toxicities in addition to the DLT threshold and use the proposed method. However, if there is not such prior
concern, then the original CRM is the method of choice.

5. Discussion

In this paper, we investigate the asymptotic properties of the generalized continual reassessmentmethod undermultiple
toxicity constraints and give the first rigorous proof of the consistency of the procedure under a class of potentially misspec-
ifiedmodels. One of the critical steps of the proof involves characterizing the location of themaximum likelihood estimator,
which is much harder in a multiple constrain problem. To overcome this difficulty, we propose a class of multiplicative
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models and show that under these models the score function can be drastically simplified and hence it becomes easier to
characterize the location of its solutions.

We have established the consistency of the sequential dosing procedure under condition B#
⊂ Ωo. When this condition

is violated, it is generally unclear whether the dosing procedure remains consistent. It is of theoretical interest to investigate
whether the condition can be weakened. In addition, the consistency result is obtained using a multiplicative model (2) as
theworkingmodel. The consistency of dosing procedure under non-multiplicativemodels requires further study. Therefore,
although clinicians have flexibility to choose their own working models, it is recommended that a multiplicative model be
used for its clear clinical interpretation and confirmed theoretical properties if the trials involvemultiple toxicity constraints.

It must be noted that in order to make use of all L constraints, full heterogeneity in Y must be observed. Otherwise, some
of the constraints will never be invoked. Depending on the number of constraints specified, observing full heterogeneity
may require large sample sizes. Given the small sample sizes in most phase I studies, we do not recommend many toxicity
constraints, although the procedure remains theoretically justified. From the practical point of view, we believe that inmost
phase I studies using two constraints, one constraint on DLT and one additional constraint, will be sufficient.

The findings in Iasonos et al. (2011), Van Meter et al. (2011, 2012) indicate that incorporating the additional grade
information in the modeling does not generally improve the accuracy of identification of the MTD as long as the objective
remains the same as the original CRM. The proposedmethod complements the above findings by showing that incorporating
the grade information could be helpful if the objective is modified to include additional constraints on the various levels. In
practice, the proposed method can be applied to situations where the investigators are interested in setting thresholds for
various gradations of toxicity and seeking for an MTD that satisfies multiple toxicity criteria.
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